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Abstract: The building sector is a major contributor to greenhouse gases, consuming significant energy
and available resources. Energy renovation of buildings is an effective strategy for decarbonisation,
as it lowers operational energy and avoids the embodied impact of new constructions. To be
successful, the energy renovation process requires meaningful building models. However, the time
and costs associated with obtaining accurate data on existing buildings make large-scale evaluations
unrealistic. This study proposes a methodology to streamline building energy models from open-
access datasets for urban scalability. The methodology was tested on six case study buildings
representing different typologies of the Swedish post-war construction period. The most promising
results were obtained by coupling OpenStreetMap-sourced footprints with energy performance
declarations and segmented archetypes for building characterisation. These significantly reduced
simulation time while retaining similar accuracy. The suggested methodology streamlines building
energy modelling with a promising degree of automation and without the need for input from the
user. The study concludes that municipalities and building owners could use a such methodology to
develop roadmaps for cities to achieve carbon neutrality and evaluate energy renovation solutions.
Future work includes achieving higher accuracy of the generated energy models through calibration,
performing renovation analysis, and upscaling from individual buildings to neighbourhoods.

Keywords: energy modelling; building renovation; urban scalability; GIS; open access datasets;
automation; carbon neutrality

1. Introduction

Globally, the building sector accounts for 40% of energy use, corresponding to 36%
of global greenhouse gas emissions in Europe [1]. Roughly three-quarters of buildings
in the EU are energy inefficient, yet 85–95% of today’s buildings will still be in use in
2050 [2] when the EU aims to achieve climate neutrality [3]. More than one-third of the
EU’s buildings are over 50 years old, but the renovation rate is lower than 1% per year [3,4].
Sweden aims to reach climate neutrality by 2045 [5]. Moreover, 23 Swedish pioneer
municipalities—together accounting for 40% of Sweden’s population—are even more
ambitious and aim for that goal by 2030 [6]. As in many European cities, many municipal-
ities in Sweden experienced the rapid growth of residential neighbourhoods during the
post-war period. Those extensive neighbourhoods now need renovation. Thus, large-scale
energy renovation opens a window of opportunity to reduce building operational energy
and, therefore, help to decarbonise Swedish cities.

Making an informed decision on building renovation is challenging [4]. Stakeholder
interests, combined with uncertainty regarding the final performance, often impede deep
energy renovations [4,7–9]. Building energy modelling is advantageous in assessing the
impact of different renovation scenarios through numerical simulations, thereby providing
evidence to the debate among decision makers [4,10,11]. For energy renovations, energy
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models of large building stocks are particularly beneficial for both increasing the actual
renovation rate of buildings and evaluating building impacts on a larger scale [12].

Numerous methodologies and tools have been developed to scale energy modelling
from single buildings to urban models [13]. Urban energy building models (UBEM) provide
users with the energy demand of the building stock, including baseline calibration [14],
energy efficiency scenario evaluation, and other important analyses such as the economic
and environmental impact during the future life cycle of the buildings [15–18].

Urban building energy modelling has been thoroughly reviewed [19–21] and is usually
divided into two modelling approaches: top–down and bottom–up. Top–down urban mod-
els describe buildings at a general level, using large datasets that are not building-specific.
These datasets contain factors that drive the energy performance of buildings [22,23],
such as technical [9,24], socio-economic [25–27], or physical factors [28]. However, these
datasets are based on reported data from the past, making top–down UBEMs useful for
large-scale assessments but not ideal for predicting future scenarios. Further, top–down
building modelling lacks the necessary granularity to enhance detailed numerical simula-
tions. Bottom–up building modelling, on the other hand, uses building-specific models
that can support detailed numerical simulations to predict the future energy performance
of buildings. The energy modelling can be accomplished through statistical methods or
by actual thermal modelling of the buildings. Both methods are driven by databases on
building constructions such as envelope materials, window structure, HVAC systems and
user behaviour. However, suitable databases are often non-existent or difficult to access,
and energy modelling knowledge is needed to process them.

Organising the input for simulation is the key focus of this paper, which aims to
simplify this task as it is considered the major obstacle to obtaining bottom–up urban
models. The urban modelling process is time-consuming and complex, even for an expert
user. To obtain a reliable energy model, methods have been sought to break down the
process into three main subtasks: (1) organise the input for the simulation, (2) generate and
run the thermal model, and (3) validate the results (calibration) [29]. Within the scope of
the energy modelling process, this paper does not pay much attention to the second and
third subtasks, which are already well established and supported by numerous studies
and literature. Rather, it focuses on the first step, which is considered the major obstacle to
large-scale assessments.

In recent years, many bottom–up generated urban models have gained momen-
tum [30]. Generally, bottom–up UBEM is built by merging large datasets that describe
buildings and user patterns. It is common to use available geographical information
systems (GIS) datasets to generate building geometries, often referred to as 3D city mod-
els [31–33]. In Sweden, however, the standard for generating and managing 3D city models
is still under development [31,34], which is a major barrier to automating UBEM generation.
Moreover, due to the lack of a standard, access to 3D city models is not centralized and each
city decides on the level of detail or the tools they use to generate these models. [31,33,34].

Unlike 3D urban models, building footprints are freely accessible worldwide through
Google Maps, OpenStreetMap or other web mapping platforms. The OpenStreetMap
project is a global open GIS database that offers a free download service for building
footprints in OSM extension. In Sweden, Lantmäteriet, the Swedish mapping cadastral and
land registration authority, offers public geodata services that include building footprint
datasets, typically as shapefiles (SHP) [35]. Those datasets can be partially obtained on the
website. Full access is given for research through the Geodata Extraction Tool (GET) [36]
offered by the Swedish University of Agricultural Sciences, SLU.

Building geometry modelling can be obtained from the “slicing” of a 3D solid or from
extrusion of the building footprint. Figure 1 summarises the cutting (A) and extrusion (B)
methods graphically.
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The first modelling method (A) employs existing 3D solid models, such as City GML
or City JSON, to create building solids. These 3D models represent the geometry, topology,
semantics, and appearance of real-world city objects, such as buildings, in a digital format.
Building solids can also be constructed from other types of geospatial data, such as point
clouds based on laser scanning (LIDAR) or raster datasets (aerial photographs). Point
clouds are dense collections of 3D points that can be used to reconstruct the 3D geometry
of buildings. Raster datasets, such as aerial photographs, can be used to extract building
footprints and other features. In this case, if thermal zones are required for each level, the
solid is sliced to define the different floors.

The second modelling method (B) uses the building footprint, which represents the
outline of the building at ground level, to extrude each level and stack them on top of
each other. This method can be used when the detailed 3D geometry of a building is not
available. The choice between the two methods depends on the level of detail required
for the simulation and the available dataset. The City GML [37–39] modelling standard
organises the level of detail (LOD) of the building geometry, into four consecutive groups
(LOD0–3). LOD0 represents the lowest level of detail, with only the building’s footprint
available. LOD1 represents a simplified exterior volume with a flat roof [34,40], and it is
typically used for thermal modelling of buildings [21,38,41,42]. LOD2 and LOD3 represent
increasingly detailed exterior and interior geometries, respectively. The use of LOD1
allows for a balance between computational efficiency and accuracy of the simulation
results [40,43].

Energy models from building footprints are often more convenient as they require
less post-processing to become a simulation-friendly thermal model compared to the first
method. This is because the building footprint already represents the outline of the building
at ground level and can be directly used to generate the thermal model. In contrast, the
detailed 3D geometry of the building may require additional processing steps, such as
simplification or cleaning, before it can be used for simulation.

For building energy modelling, the thermal characterisation of existing construction,
active systems and usage patterns is often a complex task. At present, manual inspection
or the use of databases is necessary to obtain the thermal model of the building. When
moving to urban models, thermal characterization gets more complicated as the amount of
data to be filled in becomes too large.

At the European level, there are several databases that can provide valuable mod-
elling input data. These include the EU Building Stock Observatory (BSO) [44], the
TABULA and EPISCOPE research projects [45,46], and Energy Performance Certificates
(EPC) [47–49]. Additionally, EPCs can be used for benchmarking the energy performance
results of the UBEMs.

In Sweden, there are several databases that facilitate characterisation of the existing
residential building inventory. This includes the BETSI database, which was created fol-
lowing a survey on the technical status of 10,000 buildings by the Swedish National Board
of Housing during the heating season in 2007–2008. The building selection process in the
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BETSI study was careful to be representative of the residential building stock in Sweden.
Surveyed buildings were split between single-family houses and multi-family buildings.
Within the latter group, a segmentation was made according to the year of construction:
before 1960, 1961–1975, 1976–1985, 1986–1995 and 1996–2005. Additionally, each age group
period was subdivided into seven building typologies, resulting in 35 archetypes. BETSI
provides valuable data on building dimensions, construction details, HVAC systems, type
and percentage of openings according to facade orientation, roof and basement typology,
as well as the need for renovation and work performed to date, without being an exhaus-
tive list. Additionally, the cross-industry program for standardisation and verification
of the energy performance of buildings, SVEBY [50], has conducted multiple studies on
Swedish users’ patterns and input values [51] for accurate energy modelling of the Swedish
building stock.

However, current approaches for building energy modelling at both the building
and neighbourhood level are not yet ready to provide fully automated energy modelling.
This is due to limitations in data management and interoperability, and a lack of suitable
methods for large-scale assessments that are technologically ready to be implemented.
These limitations have been recognized by several studies [52–56].

This research aims to fill this gap by providing a new methodology to generate building
energy models for multi-dwelling residential buildings or groups of buildings in Sweden.
The target group of the methodology is users without prior knowledge of energy modelling,
such as building owners and municipalities. To ensure ease of use, priority was given to
technological and interoperability readiness, as well as free access to the tools and datasets
employed. To demonstrate the effectiveness of the proposed methodology, six case study
buildings were selected from different geographical locations in Sweden, built during the
period 1961–1975, and representing different building typologies.

2. Methods

This section describes the proposed energy modelling methodology. Section 2.1
describes the overall modelling workflow of the flexible input process whereby the user can
customise the default generated building energy model needed. Section 2.2 describes the
generation of the building geometry, which is then thermally and functionally characterised
into a suitable energy model, as described in Section 2.3. Finally, the selected case study
buildings are presented in Section 2.4.

2.1. Overall Modelling Workflow

Figure 2 summarises the entire modelling process, describing the script developed
to automate a building energy model using the Grasshopper visual programming envi-
ronment coupled with the CAD modeller Rhinoceros 3D. The process starts by asking
the user to define specific data. When input data are unknown or unavailable for the
different input needed, characterisation is made through a predefined age and typology
archetype segmentation from a database pool, including geographic information systems
(GIS), thermal properties and energy performance certificate (EPC) datasets.

The Grasshopper script automates the process of finding the closest building footprint
to a selected address or building. The building footprint is defined as a closed polygon
with embedded metadata for each point, such as geographical coordinates, building,
block, neighbourhood and others, following predefined attribute categorisation of the
map features [57]. Although the amount and quality of the metadata associated with
each building footprint in OpenStreetMap may vary, points defining building entrance
and address are generally available. The address for each staircase is used to access the
building’s corresponding energy performance certificates (EPC).
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Figure 2. Overall building modelling workflow proposed. The automated grasshopper script
highlighted in grey integrates different GIS and modelling tools (Ladybug Tools-Dragonfly. Avail-
able online: https://www.ladybug.tools/dragonfly.html (accessed on 1 February 2023). Ladybug
Tools-Honeybee. Available online: https://www.ladybug.tools/honeybee.html (accessed on 1 Febru-
ary 2023).) with access to different databases (online or excel files) using an additional layer of
Python code.

The data obtained from the EPCs is used to adjust the geometrical model, which is
built from either OSM or SHP footprints. If more precise data are not available from the
user, the number of stories is obtained from the EPC, and each level’s height is an average
value obtained from the BETSI database.

The thermal characterization of the building is then performed using segmented
archetypes related to the building’s age and typology. Once the numerical model is
ready, it can be stored as a file (json) or sent for direct simulation to EnergyPlus through
OpenStudio using different energy modelling plugins for Grasshopper 3D to create the
numerical model.

2.2. Building Geometry

For the building geometry construction, average floor-to-floor heights for each level
(ground floor, intermediate floor(s) and, last floor) and the window-to-wall ratio (WWR)
for each façade were taken from BETSI’s archetype. Once the whole building geometry
was generated, the resulting total heated floor area was benchmarked with the heated area
defined in the EPCs. The geometry model was adjusted to match the EPC total heated floor
area. Employing a single-objective optimisation algorithm, the necessary building footprint
offset to be made to the footprint of the building was obtained. This allowed automating
the fitting even with a complex building footprint geometry. Figure 3 provides an overview
of the process for generating the building geometry.

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 18 
 

 

 

Figure 3. The geometry model workflow includes step (3) of area fit between the geometry model 

and input data from energy performance certificates. 

The datasets explored for generating building footprints included the cadastre build-

ing footprints from building permits (SHP files) and OpenStreetMap footprint points with 

embedded map features (OSM files); both are open access and freely available. Addition-

ally, a surface model was used from Airborne Laser Scanning (LAS/LAZ files), although 

only for verification of significant deviations of volume and building height, not support-

ing the building geometry modelling, as further explained in the paragraph below. 

Different tools and processes were explored to generate the building geometry from 

open access geodata. After an exhaustive search in the two main Grasshopper 3D tool 

libraries [58,59], 49 tools were identified, out of which 39 were open access and thus fur-

ther investigated. After testing, Elk, Urbano and Volvox Grasshopper plug-ins were in-

corporated. Table 1 describes the selected GIS tools. 

Table 1. Selected tools supporting GIS integration within the Grasshopper environment. 

Tool 

Name 
Description Function Level of Automation 

ELK Grasshopper plug-in Point and metadata from OSM files Low, files uploaded manually 

URBANO Grasshopper plug-in 
Point and metadata from OSM, SHP 

and LAS files 

Medium, 

OSM automated downloading 

VOLVOX Grasshopper plug-in 
Point cloud manipulation engine from 

LAS/LAZ files 

Low, 

files uploaded manually 

As listed in Table 1, Elk was selected for point and metadata extraction from OSM 

(OpenStreetMap) files due to its simplicity and good operability. Urbano adds automation 

features to the OSM download and supports both Shapefile and Lidar formats, which can 

be imported and positioned on the correct coordinates using a translation vector, refer-

encing data previously sourced from OpenStreetMap. Volvox was employed to validate 

the volume and height of the geometries obtained manually. As shown in a graphical 

summary in Figure 4, the different building geometries (A) overlapped with the “real” 3D 

surface model obtained from the Airborne Laser Scanning, LIDAR (B) dataset to ensure 

there were no significant discrepancies through manual inspection (C). 

Figure 3. The geometry model workflow includes step (3) of area fit between the geometry model
and input data from energy performance certificates.

https://www.ladybug.tools/dragonfly.html 
https://www.ladybug.tools/honeybee.html


Sustainability 2023, 15, 3887 6 of 17

The datasets explored for generating building footprints included the cadastre building
footprints from building permits (SHP files) and OpenStreetMap footprint points with
embedded map features (OSM files); both are open access and freely available. Additionally,
a surface model was used from Airborne Laser Scanning (LAS/LAZ files), although only
for verification of significant deviations of volume and building height, not supporting the
building geometry modelling, as further explained in the paragraph below.

Different tools and processes were explored to generate the building geometry from
open access geodata. After an exhaustive search in the two main Grasshopper 3D tool
libraries [58,59], 49 tools were identified, out of which 39 were open access and thus
further investigated. After testing, Elk, Urbano and Volvox Grasshopper plug-ins were
incorporated. Table 1 describes the selected GIS tools.

Table 1. Selected tools supporting GIS integration within the Grasshopper environment.

Tool Name Description Function Level of Automation

ELK Grasshopper plug-in Point and metadata from
OSM files

Low, files uploaded
manually

URBANO Grasshopper plug-in Point and metadata from
OSM, SHP and LAS files

Medium,
OSM automated

downloading

VOLVOX Grasshopper plug-in Point cloud manipulation
engine from LAS/LAZ files

Low,
files uploaded

manually

As listed in Table 1, Elk was selected for point and metadata extraction from OSM
(OpenStreetMap) files due to its simplicity and good operability. Urbano adds automation
features to the OSM download and supports both Shapefile and Lidar formats, which can be
imported and positioned on the correct coordinates using a translation vector, referencing
data previously sourced from OpenStreetMap. Volvox was employed to validate the
volume and height of the geometries obtained manually. As shown in a graphical summary
in Figure 4, the different building geometries (A) overlapped with the “real” 3D surface
model obtained from the Airborne Laser Scanning, LIDAR (B) dataset to ensure there were
no significant discrepancies through manual inspection (C).
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Figure 4. The process for using LIDAR-based point-cloud datasets for volume and height verification
of building geometries obtained from OSM and SHP footprints using Elk and Urbano, across the three
subfigures. Subfigure (A) displays the building geometries obtained from OSM and SHP footprints,
which are then compared to subfigure (B) that showcases the building envelope mesh and point
cloud elevations of the buildings obtained from LIDAR datasets. Finally, in subfigure (C), the volume
and height of the buildings are verified, as indicated by the arrows taking the average elevation of
points representing the roof of each building.
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Differences in height between the generated geometry and point-cloud dataset across
the six neighbourhoods investigated did not exceed 1.3 m, while differences in volume
were up to 46% greater in neighbourhood F (Ällingavägen), with L-shaped buildings. The
building geometry generation using Elk and Urbano was considered reasonably accurate.
Due to its complexity, the Volvox plug-in was not integrated into the modelling automation.
It is reserved for verification of specific cases where the discrepancies between EPC surfaces
and the model obtained are considerable. Therefore, Volvox and point-cloud generated
surfaces are not evaluated in the Results and Discussion sections.

2.3. Building Thermal Model

The next step in the modelling process was to assign the envelope characteristics that
influence the energy performance of the building. Following the previously mentioned
process, average values from the archetype database were taken according to the year of
construction of the building and its building typology. Table 2 summarises the envelope
thermal properties assigned to the model. The affected building elements, type of input
and source used are detailed.

Table 2. Basic input needed on the building envelope predefined by BETSI [49] archetype datasets
when unknown.

Envelope Thermal
Properties Unit Building Element Type of Input Source

Window to wall
ratio (WWR) % North, east, south,

west façades Average BETSI

G-Value Fraction All windows Average BETSI

U-Value glazing
materials W/m2K Apertures Average BETSI

U-Value opaque
materials W/m2K Roof, façade, ground Average BETSI

Thermal mass No predefined thermal mass is assigned—“No mass material” is selected

Once the static properties of the energy model are defined, dynamic characterisation
of the model is needed to run an initial dynamic simulation. Building program and loads
used to define the operation model of the building are summarised in Table 3.

The data sources used in this case were taken from official recommendations for the
simulation input of residential buildings in Sweden (Boverket, Sveby). Data related to the
operation of the building were based on several previous measurements [60]. These were
considered independent of the age and typology of the building. Since there are no data
from infiltration tests in the databases, an average value for the infiltration rate was used.
The type of ventilation, natural exhaust, forced exhaust, supply and exhaust, or supply and
exhaust with heat recovery, were taken from specific building EPC.

The Grasshopper visual programming platform in the Rhinoceros 3D modeller was
used to implement an all-encompassing script which automated the BEM generation within
one environment. Moreover, this allowed for an optimisation process with reasonable
time allocation per energy simulation iteration, as no need for manual post-processing
was needed between different tools. The building model was obtained using Dragonfly
(https://doi.org/10.3390/en14185931) and Honeybee from the Ladybug Tools Grasshopper
plug-in, connecting with the above input and assigning the specific weather data. Several
measures were evaluated to simplify the model and, thus, reduce simulation time for each
iteration. Keeping reasonable time per iteration was needed to allow scalability of the
model in future work, both for evaluating more buildings at the urban level and assessing
many renovation scenarios for each building. Some of the simplification measures that
were considered are illustrated in Figure 5.

https://doi.org/10.3390/en14185931
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A. The study evaluates the effect of using one thermal zone per floor instead of one
per individual dwelling unit, as the necessary detailed plans for each floor are
not available;

B. Windows obtained as a ratio of the exterior façade (window-to-wall ratio) could be
modelled as a single window per level and façade or distributed evenly;

C. Depth or thickness of the existing façade and its relative position to the window was
also evaluated;

D. Impact of considering different radius distances for the modelling of the context (e.g.,
other buildings) around the building.

Table 3. Default input sourcing that defines the building operation model.

Building Program Unit Type of Input Source

Occupancy density People/m2 Average Boverket, Sveby

Occupancy schedule Hourly Monitored/Archetype
weighted Sveby

Lighting density W/m2 Recommended Boverket, Sveby

Lighting schedule Hourly Archetype weighted Boverket, Sveby

Equipment density W/m2 Recommended Boverket, Sveby

Equipment schedule Hourly Monitored/weighted Sveby, ELIB [60]

Infiltration rate l/s Monitored/weighted Sveby, ELIB

Infiltration schedule Hourly Constant Boverket, Sveby, ELIB

Ventilation rate l/s/m2 HFA
Building code,

Monitored/weighted ELIB

Ventilation schedule Hourly Constant ELIB

Ventilation system l/s/m2 of façade F, AF, FT, FTX BETSI

Heating setpoint Celsius Monitored/weighted Sveby

Heating schedule Hourly Constant heating
season Sveby

Cooling setpoint Celsius Need 27◦ Celsius Sveby

Cooling schedule hourly None Boverket, Sveby, ELIB
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Figure 5. Four simplification measures were tested to optimize accuracy and computational cost
of the thermal model. The 3D model shows the building with colour-coded features. Red is the
roof, yellow is exterior walls, blue is apertures, and purple is the context. Subfigures (A–D) depict
the effects of thermal zoning, window distribution, facade depth/thickness, and context distance
modeling, respectively.
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2.4. Case Studies

The selected neighbourhoods are from the post-war construction period (1961–1975)
since they contain a significant share of the building stock in Sweden and need renovation.
For this period, three out of the seven different building typologies available were selected,
including different numbers of stories. Those typologies were selected based on a statistical
representative within the construction period. However, the archetype characterization
seen in the previous Building Thermal Model section was averaged for the entire age group,
disregarding building typologies. In order to limit uncertainty, the selected buildings are in
the same climatic zone (south of Sweden), do not have a basement, and have no upgraded
forced exhaust ventilation system. No further data were available for the buildings besides
those obtained from the databases mentioned above. A synopsis of the selected case studies
can be found in Table 4.

Table 4. Neighbourhoods selected as case studies.

Neighbourhood Location Building
Typology

Number of
Stories Construction Year Total HFA/m2

Building

A. Fagottgränden Lund Low-rise slab 2 1970 1257

B. Markurellagatan Gothenburg Low-rise slab 3 1970 1476

C. Kadettgatan Helsingborg Low-rise slab 4 1968 2948

D. Siriusgatan Gothenburg High-rise slab 7 1970 6211

E. Rosengård Malmö High-rise slab 9 1969 6800

F. Ällingavägen Lund Non defined/Other 5 1966 3026

3. Results

The results of implementing the methodology for geometry and thermal modelling of
the case studies are described in Sections 3.1 and 3.2, respectively.

3.1. Geometry Modelling of Case Studies

The generation of building geometry by using building footprints from OpenStreetMap
(OSM) and cadastral shapefiles (SHP) was successful in all neighbourhoods. Table 5 dis-
plays the results obtained. When using OSM footprints, the resulting areas were generally
larger, with differences ranging from 3.5% to 21% compared to the area obtained from the
energy performance certificates (EPC). The offset needed to adjust building footprints and
match EPC’s total heated floor area ranged from 32 to 123 centimetres.

Differences in the resulting heated floor area (HFA) obtained were smaller when
using SHP building footprints. No adjustment to the building footprint was necessary for
neighbourhood B, as the area was practically the same as that found in the EPC. However, in
two cases, neighbourhood A and C, the area difference was 16.3% and 11.4%, respectively.

Figure 6 compares the distribution of area difference between the model and EPC, the
offset applied to the building footprint to fit EPC area, and the relative compactness ratio
of resulting geometries from OSM and SHP footprints.

The total area difference boxplots show that the use of Shapefiles resulted in geometries
with an area difference of less than 16% compared to EPC. Most results were targeted
between 7% and 11%. With the OSM dataset, the area difference reached a maximum of
21%, with a wider dispersion of results. The offset required for area adjustment with SHP
dataset ranged from no adjustment to a maximum of 80 cm, with a concentration of results
in the 30–60 cm range. In contrast, the offset with OSM ranged from 30 cm up to 1.2 m.
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The different complexities of the buildings affected both datasets similarly, but a more
compact range of the results of total area difference and offset required was observed using
cadastral shapefiles.

Table 5. Building geometry benchmark of OpenStreetMap (OSM files) building footprints against
(energy performance certificates, EPC) for case studies A to F.

Neighbourhood
Geometry

Visualisation
from SHP

Source
Total
HFA
m2

Offset
Needed

cm

HFA
Difference

%

Relative
Compactness

Ratio

A Fagottgränden
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3.2. Thermal Modelling of Case Studies

The thermal characterization using the proposed methodology resulted in satisfactory
generation of the numerical building model and subsequent energy simulation in Energy-
Plus. Table 6 summarises the energy performance accuracy and simulation times obtained
during the optimisation process of the thermal modelling.
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Table 6. Averaged results comparison of the different simplification measures tested using Open-
StreetMap and shapefile sourced building footprints. (*) The default context distance of 50 m was
retained for the comparison of results when considering other radius distances for modeling the
building context.

Measure Heating Energy Need
Average Difference/%

Simulation Time
Average Difference/%

OpenStreetMap Shapefile OpenStreetMap Shapefile

A. Thermal zone per level 0.9 1.2 −625 −728

B. Grouped windows −0.6 0.1 −35.4 −14.7

C. Adding façade depth 2.8 4.7 122 506.7

D10. Context 10 m −1.6 NP 1.3 NP

D25. Context 25 m −0.9 NP −1.1 NP

D50. Context 50 m 0 * NP 0 * NP

D75. Context 75 m 0.1 NP 0.9 NP

The most significant simulation time savings were achieved when using a single ther-
mal zone per level, with reductions of 625% and 728% using OSM and SHP, respectively,
while heating energy increased by around 1%. Grouping windows had a negative impact
on the energy performance of 0.6% with OSM and barely any impact on the SHP model.
Simulation time was reduced by an average of 35.4% to 14.7%. Modelling the façade’s
depth resulted in simulations that were up to 500% slower and increased heating energy
by 5%. Finally, the impact of modelling different contexts (adjacent buildings, vegetation,
etc.) at different distances around the building was verified, and a maximum radius of
50 m (D50) was defined as a “common practice” value and used as a reference for com-
parison. The default context radius of 50 m was retained as the standard, but it should
be increased where necessary, for instance, if the primary source of obstruction is beyond
50 m. Once the above-described settings for the energy modelling were optimised, the
procedure was tested on specific case studies with the following settings: a single thermal
zone per storey, grouped windows per storey and façade orientation, no façade depth
shading around the apertures, and context within 50 m. Table 7 displays the results of the
energy performance and simulation time according to the dataset used for importing the
building footprints.

Table 7. Energy performance for heating and simulation time results obtained across the studied
neighbourhoods. The offset values are referring to heating energy based on adjusted building
footprints to match the EPC’s total heated floor area.

Neighbourhood
Building Typology Source Heating Energy

kWh/m2/y
Heating

Energy Difference/%
Simulation

Time/Seconds

A. Fagottgränden EPC 126 -
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SHP 99 43 222 

SHP offset 111 28 234 

The measured heating energy in the EPCs was used to benchmark the percent differ-

ence between the energy models obtained from the two datasets before and after the area 

fitting of the building’s footprint. As shown in Figure 7, results show that the gap in en-

ergy performance was lower when using SHP (5% to 25% after area adjustment). Never-

theless, the simulation time increase when using SHP was up to eight times higher com-

pared to OSM. 

OSM 121 4 14
OSM offset 127.4 1 14

SHP 125 0.9 55
Low-rise slab SHP offset 133 5.2 60

B. Markurellagatan EPC 81 -
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Table 7. Cont.

Neighbourhood
Building Typology Source Heating Energy

kWh/m2/y
Heating

Energy Difference/%
Simulation

Time/Seconds

C. Kadettgatan EPC 65.5 - -
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OSM 71 39 32
OSM offset 79 25 33

SHP 79.5 24 792
High-rise slab SHP offset 83 19 657

E. Rosengård EPC 90 - -

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 18 
 

 

Table 7. Energy performance for heating and simulation time results obtained across the studied 

neighbourhoods. The offset values are referring to heating energy based on adjusted building foot-

prints to match the EPC’s total heated floor area. 

Neighbourhood 

Building Typology 
Source 

Heating Energy 

kWh/m2/y 

Heating  

Energy Difference/% 

Simulation  

Time/Seconds 

A. Fagottgränden  

 
Low-rise slab 

EPC 126 -  

OSM 121  4 14 

OSM offset 127.4 1 14 

SHP 125  0.9 55 

SHP offset 133  5.2 60 

B. Markurellagatan  

 
Low-rise slab 

EPC 81 -  

OSM 123.5  10 9  

OSM offset 126.4 7.5 9 

SHP 126.7 7.2 53 

SHP offset 128.1 6 52 

C. Kadettgatan  

 
Low-rise slab 

EPC 65.5 - - 

OSM 56.2 16.5 12 

OSM offset 62.1 5.5 11 

SHP 59.1 11 18 

SHP offset 62.4 5 18 

D. Siriusgatan 

 
High-rise slab 

EPC 99 - - 

OSM 71 39 32 

OSM offset 79 25 33 

SHP 79.5 24 792 

SHP offset 83 19 657 

E. Rosengård 

 
High-rise slab 

EPC 90 - - 

OSM 70 29.4 50 

OSM offset 77.5 16 52 

SHP 81 11 516 

SHP offset 85.1 6 522 

F. Ä llingavägen 

 
Others, Complex  

EPC 142 - - 

OSM 96 47 66 

OSM offset 102 39 72 

SHP 99 43 222 

SHP offset 111 28 234 

The measured heating energy in the EPCs was used to benchmark the percent differ-

ence between the energy models obtained from the two datasets before and after the area 

fitting of the building’s footprint. As shown in Figure 7, results show that the gap in en-

ergy performance was lower when using SHP (5% to 25% after area adjustment). Never-

theless, the simulation time increase when using SHP was up to eight times higher com-

pared to OSM. 

OSM 70 29.4 50
OSM offset 77.5 16 52

SHP 81 11 516
High-rise slab SHP offset 85.1 6 522

F. Ällingavägen EPC 142 - -

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 18 
 

 

Table 7. Energy performance for heating and simulation time results obtained across the studied 

neighbourhoods. The offset values are referring to heating energy based on adjusted building foot-

prints to match the EPC’s total heated floor area. 

Neighbourhood 

Building Typology 
Source 

Heating Energy 

kWh/m2/y 

Heating  

Energy Difference/% 

Simulation  

Time/Seconds 

A. Fagottgränden  

 
Low-rise slab 

EPC 126 -  

OSM 121  4 14 

OSM offset 127.4 1 14 

SHP 125  0.9 55 

SHP offset 133  5.2 60 

B. Markurellagatan  

 
Low-rise slab 

EPC 81 -  

OSM 123.5  10 9  

OSM offset 126.4 7.5 9 

SHP 126.7 7.2 53 

SHP offset 128.1 6 52 

C. Kadettgatan  

 
Low-rise slab 

EPC 65.5 - - 

OSM 56.2 16.5 12 

OSM offset 62.1 5.5 11 

SHP 59.1 11 18 

SHP offset 62.4 5 18 

D. Siriusgatan 

 
High-rise slab 

EPC 99 - - 

OSM 71 39 32 

OSM offset 79 25 33 

SHP 79.5 24 792 

SHP offset 83 19 657 

E. Rosengård 

 
High-rise slab 

EPC 90 - - 

OSM 70 29.4 50 

OSM offset 77.5 16 52 

SHP 81 11 516 

SHP offset 85.1 6 522 

F. Ä llingavägen 

 
Others, Complex  

EPC 142 - - 

OSM 96 47 66 

OSM offset 102 39 72 

SHP 99 43 222 

SHP offset 111 28 234 

The measured heating energy in the EPCs was used to benchmark the percent differ-

ence between the energy models obtained from the two datasets before and after the area 

fitting of the building’s footprint. As shown in Figure 7, results show that the gap in en-

ergy performance was lower when using SHP (5% to 25% after area adjustment). Never-

theless, the simulation time increase when using SHP was up to eight times higher com-

pared to OSM. 

OSM 96 47 66
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The measured heating energy in the EPCs was used to benchmark the percent differ-
ence between the energy models obtained from the two datasets before and after the area
fitting of the building’s footprint. As shown in Figure 7, results show that the gap in energy
performance was lower when using SHP (5% to 25% after area adjustment). Nevertheless,
the simulation time increase when using SHP was up to eight times higher compared
to OSM.
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Figure 7. Boxplot distribution of energy need difference and total simulation time results of the
different GIS sources.

The simulation time remained below one minute for OSM, except in neighbourhood F,
where it was 72 s due to the increased complexity of the buildings. For SHP, the longest
time was 657 s per building in the Siriusgatan neighbourhood (D) (see Figure 7). The
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high-rise slab buildings resulted in the most time-consuming energy simulations when
using SHP, while the more geometrically complex neighbourhood performed similarly
for OSM and shapefile energy models. The low-rise slab neighbourhoods had the fastest
energy simulations and the closest results to the EPCs, with the best performance across
all building typologies when using OSM-based energy models. Figure 8 shows that the
modelled heating need had the lowest deviation compared to measurements from EPCs
for low-rise buildings.
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4. Discussion

The results of the study contribute to quantifying the trade-off between energy results
accuracy and simulation time when using different approaches to generate building energy
models with no input data from users. The OpenStreetMap (OSM) GIS database was found
to be suitable for modelling low-rise buildings. The accuracy of the generated heated floor
area and heating need was found to be similar between OSM and shapefile (SHP) cadastre
GIS database, so OSM was preferred for this building typology due to the faster simulation
time. The higher compactness and less complex geometry of low-rise buildings could
also explain the lower deviation between the modelled heating area and resulting heating
need compared to measurements from energy performance certificates (EPCs) for low-rise
buildings. The good performance for low-rise buildings is further supported by the fact
that this typology represents 58% of the BETSI dataset for the analysed period. This means
that assumptions about the thermal properties of the building envelope and ventilation
systems are more likely to be accurate when modelling low-rise buildings. Additionally,
low-rise buildings are the most common typology for residential buildings in Sweden, so
this result is relevant for scaling up future studies on national-level renovation scenarios
where accuracy and low computational cost of thermal modelling are essential.

Contrarily, other building typologies, such as high-rise and complex buildings showed
significant differences between the modelling procedures using OSM and SHP. These build-
ings have more complicated footprint geometries, which explains the larger deviation when
modelled using a more simplistic method such as OSM. In Figure 9, a visual comparison
is shown of a high-rise building modelled using the OSM footprint on the left and the
cadastral shapefile on the right.

The difference between the footprints is due to the fact that high-rise slab buildings
often have buffered entrances attached to each staircase, which are not captured in the
OSM data but are present in the cadastral shapefile database. When using the SHP data
with the extrusion modelling procedure, it is important to target a higher level of detail
(LOD), such as LOD 1.3, which provides geometric detail of the outer perimeter per level.
Otherwise, the complexity can hinder the effectiveness of simplification measures such as
grouping the windows per façade. This issue was seen during the optimization process of
the geometry model (Figure 5), as the implementation of grouping apertures proved to be
twice as effective in reducing simulation times with the OSM-based models.
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Figure 9. Example of a high-rise building energy model analysed. The figure displays the 3D model
of the building with colours representing different features. Red represents the roof of the building,
yellow represents the exterior walls, and blue represents the apertures of the building.

The results of the study showed that the difference between the modelled and mea-
sured heating energy was larger in high-rise buildings, which could be attributed to the
generic archetype being more representative of low-rise buildings and their thermal prop-
erties and HVAC systems. However, it should be noted that the sample size is small,
and the results may not be generalizable to all building types from the same construction
period, pointing to the importance of introducing more archetypes to better model under-
represented building typologies in future studies. Although the authors are aware that
comparing energy efficiency accuracy with EPC values is not ideal, the aim of this study
was to establish the methodology and verify the proper semi-automated modelling process.
Future work includes increasing the accuracy of the generated energy models, analysing
renovation scenarios, and upscaling from individual buildings to neighbourhoods. To
achieve this, the methodology should be calibrated using more data on real energy use
and extended to other construction periods, incorporating more archetypes and “layers”
of modelling, such as profitability, life cycle assessment, energy use, and indoor comfort,
which may require access to additional databases such as material and labour costs and the
climate impact of materials and energy use.

5. Conclusions

The integration of urban energy modelling into existing building renovation processes
is vital for promoting building upgrades across a large building stock without the need for
personal inspection or technical expertise. This study proposes a methodology for stream-
lining building energy modelling with a promising degree of automation and reduced input
requirements from the user. The methodology provides a solid basis for important analyses
of the existing building stock at the urban level, empowering non-technical stakeholders to
make informed decisions in the early stages of the process.

The building energy modelling process was automated by coupling open access GIS
databases, statistical analysis of the building stock’s thermal performance, and available
modelling tools. Several modelling approaches were tested in six case study buildings
representing different post-war construction typologies in Sweden. The study found
that OpenStreetMap (OSM) is a promising GIS database for the proposed methodology.
Results showed six times faster simulation time averaging 23 s compared to the shapefile
(SHP) cadastral GIS database, which had an average simulation time of 257 s. Despite the
difference in simulation time, the accuracy of heating energy need predictions between the
two databases was comparable, with differences between simulations and measurements
ranging from 6% to 22% for OSM and from 5% to 15% for SHP.

The limited sample size and use of a generic archetype highlight the need for further
research to increase the accuracy of the building energy models. This can be achieved by
incorporating additional building archetypes and calibrating the methodology with real
energy use data. The study lays the foundation for further development of a methodology
for evaluating renovation scenarios toward decarbonisation in the Swedish building stock.
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The proposed approach has potential to be integrated into an online application designed
for non-technical users such as municipalities and property owners, to support the upgrade
of the existing building stock toward energy efficiency and sustainability.
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Nomenclature

BETSI Buildings’ Energy Use, Technical Status and Indoor Environment
CAD Computer Aided Design
EPC Energy Performance Certificate
EU European Union
GET Geodata Extraction Tool
GIS Geographic Information Systems
HFA Heated Floor Area
HVAC Heating, Ventilation, Air Conditioning
LIDAR Laser Imaging, Detection, and Ranging
LOD Level of Detail
OSM OpenStreetMap
SHP Shapefile
SLU Swedish University of Agricultural Sciences
UBEM Urban Building Energy Model
WWR Window-to-Wall Ratio
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